Technique for Measurement of Foot and Ankle Kinematics
KR Kaufman, D Morrow, D Hansen, HB Kitaoka
Orthopedic Biomechanics Laboratory, Mayo Clinic, Rochester, MN 55905

Introduction: A number of methods have been suggested for measurement of lower extremity kinematics. However, these models describe the foot as one rigid segment. Recently, efforts have begun to develop marker sets for use in foot and ankle motion analysis. The purpose of this study is to describe a technique for quantification of three-dimensional foot and ankle motion.

Clinical Significance: Measurement of foot and ankle motion is essential for understanding the pathomechanics of foot and ankle pathology.

Methods: The foot and ankle complex was divided into three functional segments: lower leg, hindfoot, and forefoot. A total of 11 markers are used to define the three-segment model (Figure 1). An eight-camera ExpertVision™ System (Motion Analysis Corporation, Santa Rosa, CA) was used to collect reflective marker trajectory data at 60 frames/sec. Local coordinate systems were constructed for each segment. The motion of the distal segment orientation was expressed relative to the next proximal segment using Eulerian angle conventions. An initial standing reference position was collected to define the orientation of the embedded coordinate systems in a neutral position. The static reference position was captured in a weight-bearing stance with the mid-line of the posterior aspect of the calcaneus and the second toe on a line parallel to the line of progression with the tibia orientated vertically. All dynamic data was compared to the static reference position using the least squares position orientation algorithm. A minimum of 3 trials were collected from each of 10 subjects (31 ± 6 years of age).

Results: The sagittal plane hindfoot motion (Figure 2a) indicates that the hindfoot moves into plantarflexion after foot contact then reverses and begins to dorsiflex until late stance when the hindfoot plantarflexes before toe off. Coronal plane hindfoot motion demonstrates an initial eversion with movement back into inversion. Transverse plane hindfoot motion shows internal rotation during first rocker, external rotation during second rocker, and internal rotation during third rocker. Sagittal plane forefoot motion (Figure 2b) demonstrates dorsiflexion until opposite foot strike when the forefoot again goes into plantarflexion. The dorsiflexion during mid-stance represents a flattening of the longitudinal arch as the body bends.
progresses over the stance foot. Coronal plane forefoot motion demonstrates progressive
eversion. The transverse plane forefoot motion demonstrates external rotation and then
internal rotation.

Discussion: A three-dimensional model for measuring normal foot and ankle motion has
been developed. Hindfoot motion reported in this study agrees with published results. Motion
of the forefoot segment also agrees with previously published studies.

A cadaveric study was conducted to compare the accuracy of skin mounted markers to the
underlying bony anatomy. Dynamic testing was performed by rotating the ankle and foot
from maximum dorsiflexion to maximum plantar flexion by loading the appropriate muscles.
Additional dynamic testing was performed by rotating the ankle through the appropriate
tendons from maximum inversion to maximum eversion. The accuracy test demonstrated that
this marker system measured ankle and foot motion within three degrees root-mean-square
error.

Consideration was given to adding a fourth rigid-body segment comprised of the halux to the
foot model. A light-weight array carrying three 1 cm spheres was attached to the proximal
halux approximately 1.5 cm distal to the first MTP joint. The motion of this array was
compared to the underlying motion of the bony segments. Due to large variability found in
the rotational measurements, the idea of adding a fourth segment to this foot model was
dropped.

Additional considerations must be given to the assumption that each of the segments in this
biomechanical model satisfy the rigid body assumption. While this assumption may be
reasonable for the shank segment and the rearfoot (calcaneus) segment, there will be some
relative motion of the metatarsals during gait. The motion of these joints compared to the
total motion described for the forefoot segment is yet to be determined.

References:
Delozier, G., et al., A method for measurement of integrated foot kinematics. *International
Symposium of 3-Dimensional Analysis of Human Movement*, Montreal, 1991
Annual East Coast Gait Conference*, Rochester, MN, 1993
Padilla, J., Department of Orthopedics, Mayo Graduate School, Rochester, MN.

Acknowledgement: This work was supported by a grant from the National Institute of
Health – AR44513 and also by the Mayo Clinic/ Mayo Foundation.