Attenuation of Transient Foot-Ground Reaction Forces
Glenn K. Klute1,2, Glenn Lee1,3, Joseph M. Czerniecki1,4
1Dept. of Veterans Affairs, Puget Sound Health Care System, Seattle, WA 98108
2Depts. of Mechanical Engineering, 3Computer Science, and 4Rehabilitation Medicine,
University of Washington, Seattle, WA 98195

Introduction: Excessive foot-ground reaction forces (GRF) are often cited as the cause of
gait related injuries. To gage the effectiveness of an intervention (e.g. insoles, footwear, floor
material, prosthetic components), measurements of accelerations and foot GRFs have become
widely used methodologies. While studying accelerations measured during walking with
footwear of varying hardness, Light et al. [1] observed that high frequency components are
superimposed on an ill-determined rising baseline due to the progression of the body center of
mass in the direction of motion and changes in its vertical accelerations. This observation
might suggest the use of a Fourier transform to obtain frequency domain information.
However, because the Fourier transform assumes stationary waveforms over the sample
period [2], the magnitude of transient components will be under-estimated and subtle features
in the foot GRF data, particularly when they only occur for short durations, are likely to be
obscured.

We present a wavelet-based analysis of the vertical foot GRF (Fz) data that preserves both the
time and frequency content and does not under-estimate transient magnitudes. Our interest is
the frequency content and magnitude of the foot GRFs during the first 200 msec following
initial contact and how it changes in response to different shock-absorbing interventions. We
suspect magnitude, frequency, and dose are all related to the incidence of gait-related injuries
and hypothesize that interventions that attenuate higher frequency components will provide
the greatest benefit.

Statement of Clinical Significance: By developing novel approaches to understanding
impact attenuation by prosthetic components for amputees and prophylactic footwear for
diabetic patients, we seek to achieve improved mobility and independence while reducing
health care costs associated with ineffective interventions.

Methodology: To estimate the magnitude of foot GRF transients induced during walking, ten
intact subjects (body mass: 81 ± 10 kg, mean ± S. D.) were recruited and all provided
informed consent. Fz was measured while walking barefoot (5 repeated trials) at their self-
selected walking speed (1.5 ± 0.1 m/s) over a force plate (Kistler, Switzerland) filtered with a
100 Hz low pass 2-pole Butterworth analog anti-alias filter and sampled at 1280 Hz. Subjects
were presented with two conditions in random order: (1) no shock-absorbing sheet on the
force plate and (2) a 9.5 mm thick Sorbothane™ sheet covering the force plate.

Wavelet analysis on the Fz data was calculated using a stationary discrete wavelet packet
algorithm created with Matlab software (Mathworks; USA). A Least Asymmetric wavelet of
filter width 8 was used as it closely approximates an ideal band-pass filter due to small side-
lobes outside the band-pass corner frequencies. The peak foot GRF observed during the first
200 msec of stance was calculated across each of nine frequency pass-bands from 10 to 100
Hz. We compared the mean peak force observed for both conditions within each frequency pass-band using an *a priori* alpha level of p < 0.05.

Results: The magnitude of Fz in the first 200 msec of stance across the spectrum (10 to 100 Hz) was on the order of five to 10 percent of the time series loading response peak (Figure 1). Statistically significant differences between the barefoot and shock-absorbing sheet conditions were found for pass-bands 10-20, 50-60, 60-70, 70-80, 80-90, and 90-100 Hz (p < .05). The shock-absorbing sheet amplified the peak force between 10 and 20 Hz and it attenuated the peak force from 50 to 100 Hz.

![Figure 1: The mean peak vertical foot GRF (Fz) at each pass-band (mean ± s.d.).](image)

Discussion: The results demonstrate that walking on a common shock-absorbing material attenuates forces at higher frequencies (50 to 100 Hz), but not at lower frequencies (10 to 50 Hz). Coupled with reports that shock-absorbing materials were effective in reducing stress fractures, overuse injuries, heel pain, Achilles tendonitis, foot bruises and blisters in four of five prospective studies [3-6] but see also [7], this data lends support to the hypothesis that higher frequencies are a responsible factor in gait-related injuries.

References:

Acknowledgements: The Department of Veterans Affairs, Veterans Health Administration, Rehabilitation Research and Development Service, supported this research.